STUDIES ON CEPHALOSPORIN ANTIBIOTICS

III. SYNTHESIS, ANTIBACTERIAL ACTIVITY AND ORAL ABSORPTION OF NEW 3-(SUBSTITUTED-ALKYLTHIO)-7 β-[(Z)-2-(2-AMINOTHIAZOL-4-YL)-2-(CARBOXYMETHOXYIMINO)ACETAMIDO]CEPHALOSPORINS

Chiriro Yokoo, Masami Goi, Akira Onodera, Mitsuo Murata, Takatoshi Nagate and Yoshiaki Watanabe
Research Center, Taisho Pharmaceutical Co., Ltd., 1-403 Yoshino-cho, Omiya, Saitama 330, Japan

(Received for publication January 5, 1991)

Abstract

The synthesis, antibacterial activity and oral absorption in rats of new $7 \beta-[(Z)-2-(2$-aminothiazol4 -yl)-2-(carboxymethoxyimino)acetamido]cephalosporins (1) having various substituted-alkylthio groups at the C-3 position of the cephem nucleus are described. Of these, the cephalosporins with a cyanomethylthio group (1d) and fluoroethyithio group (1p) at the C-3 position showed a potent in vitro antibacterial activity against Gram-positive and Gram-negative bacteria as well as good oral absorption in rats. When administered orally to mice infected with Klebsiella pneumoniae, 1d had stronger protective effect than $\mathbf{1 p}$. The structure-activity relationships of $\mathbf{1}$ are also presented.

In recent years, research on cephalosporin antibiotics having an aminothiazole-oxime moiety at the C-7 position of the cephem nucleus, so-called third generation cephalosporins, has been undertaken extensively due to their potent antibacterial activity and remarkable stability toward bacterial β-lactamases. However, there have been few reports ${ }^{1 \sim 3)}$ on the analogues possessing a hetero-atom attached directly to the C-3 position.

In the course of our research program directed toward orally administered third generation cephalosporins such as cefixime ${ }^{4)}$ and cefteram pivoxil ${ }^{5}$, we have already found that $7 \beta-[(Z)-2-(2-$ aminothiazol-4-yl)-2-(carboxymethoxyimino)acetamido]cephalosporins with an alkoxycarbonylmethoxy group at the $\mathbf{C}-3$ position of the cephem nucleus, represented by $\mathbf{2}$ as shown in Fig. 1, display good oral absorption in rats as well as potent antibacterial activities against Gram-negative bacteria ${ }^{6}$.

In connection with that work, we then designed the new analogues (1) (Fig. 1) having various substituted-alkylthio groups at the C - $\mathbf{3}$ position, including the 3 -thio congener of $\mathbf{2}$, in order to improve the activity of $\mathbf{2}$ against Staphylococci.

This paper describes the synthesis of $\mathbf{1}$, and the effects of the new S-substituents at the C-3 position on antibacterial activity and oral absorption in rats.

Chemistry

The new cephalosporins ($\mathbf{1 a} \sim \mathbf{1 q}$) were synthesized by the route as shown in Scheme 1. Diphenylmethyl (Bh) or p-methoxybenzyl (PMB) 7β-amino-3-methanesulfonyloxycephalosporinate $(3)^{7}$ was coupled with the protected 2 -aminothiazo-le-4-acetic acid derivative (4) in the presence of

Fig. 1. Structure of 1,2 and cefixime.

$1 \quad \mathrm{X}=-\mathrm{S}\left(\mathrm{CH}_{2}\right)_{\mathrm{n}} \mathrm{R}$
$2 \mathrm{X}=-\mathrm{OCH}_{2} \mathrm{COOCH}_{3}$

Scheme 1.

$$
\mathrm{Tr}=-\mathrm{CPh}_{3}, \mathrm{Ms}=-\mathrm{SO}_{2} \mathrm{CH}_{3}, \mathrm{Bh}=-\mathrm{CHPh}_{2}, \mathrm{X}=\text { Halogen, } \mathrm{R}_{1}=\mathrm{Bh} \text { or } \mathrm{PMB}, \mathrm{n}=1 \text { or } 2 .
$$

phosphorus oxychloride and pyridine in THF to afford the 7β-acylaminocephalosporin derivative (5). Subsequently, compound 5 was reacted with sodium hydrosulfide in DMF to give the 3mercaptocephalosporin (6). After isolation or without isolation of 6, the 3-mercapto group in 6 was alkylated with various alkyl halides (7) in the presence of N, N-diisopropylethylamine as a base to yield the protected 3-substituted-alkylthio cephalosporins (8) (Method A). In this way, there was no formation of the Δ^{2}-isomer of 8 .

Compound 8 was also prepared from 5 by the alternative route using alkyl mercaptans (9) (Method B). However, considerable amounts of the 4^{2}-isomer were formed during the reaction ${ }^{8)}$.

Finally, the protecting groups in 8 were removed by the conventional method using TFA and anisole to afford the desired cephalosporin derivatives (1).

Antibacterial Activity and Oral Absorption

The in vitro antibacterial activities of the new cephalosporins (1) against selected Gram-positive and Gram-negative bacteria and their peak serum levels as a measure of gastro-intestinal absorption after oral administration ($50 \mathrm{mg} / \mathrm{kg}$) to rats are summarized in Table 1 . For comparison, the MIC values and the peak serum levels of cefixime and 2 are listed at the bottom of Table 1.

Against Staphylococcus aureus 209P JC-1, the cephalosporins having the cyanomethylthio group (1d), benzylthio group (1h), or fluoroethyl group (1p) at the C-3 position of the cephem nucleus showed more potent activity than the others. And their activities were 4 to 8 times higher than those of cefixime and $1 \mathbf{r}^{1,2)}$ having an unsubstituted-alkylthio group $\left(-\mathrm{SCH}_{3}\right)$ at the $\mathrm{C}-3$ position. Judging from the comparison of the activity between 2 having a methoxycarbonylmethoxy group at the $\mathrm{C}-3$ position and the corresponding 3-thio congener (1a), it is clear that the sulfur atom directly attached to the $\mathrm{C}-3$ position of the cephem nucleus plays an important role to enhance the antibacterial activity against S. aureus, probably due to

Table 1. In vitro antibacterial activity and peak serum level of $\mathbf{1 a} \sim \mathbf{1 r}$.

1

Compound		n	$\operatorname{MIC}\left(\mu \mathrm{g} / \mathrm{ml}, 10^{6} \mathrm{cfu} / \mathrm{ml}\right)^{\text {a }}$					$\begin{aligned} & \text { Peak serum level } \\ & (\mu \mathrm{g} / \mathrm{ml})^{\mathrm{b}} \text { po, } \\ & 50 \mathrm{mg} / \mathrm{kg} \text { rats } \\ & (n=3) \end{aligned}$
No.	R		S.a.	E.c.	K.p.	M.m.	S.m.	
1 a	COOCH_{3}	1	25	0.78	$\leqq 0.1$	$\leqq 0.1$	1.56	8.7
1b	CONH_{2}	1	25	1.56	$\leqq 0.1$	$\leqq 0.1$	0.78	11.9
1c	$\mathrm{CH}\left(\mathrm{NH}_{2}\right) \mathrm{COOH}$ (D)	1	>400	50	1.56	100	50	NT
1 d	CN	1	6.25	1.56	$\leqq 0.1$	$\leqq 0.1$	0.78	28.7
1e	$\mathrm{CH}=\mathrm{CH}_{2}$	1	25	1.56	$\leqq 0.1$	$\leqq 0.1$	0.78	15.6
1f	CF_{3}	1	12.5	1.56	$\leqq 0.1$	0.2	1.56	16.0
1 g	SCH_{3}	1	12.5	1.56	$\leqq 0.1$	$\leqq 0.1$	1.56	10.8
1h	Ph	1	6.25	1.56	$\leqq 0.1$	0.2	1.56	10.3
1 i	Pyridin-2-yl	1	12.5	0.39	$\leqq 0.1$	$\leqq 0.1$	0.78	10.6
1j	2-Aminothiazol-4-yl	,	12.5	0.39	$\leqq 0.1$	$\leqq 0.1$	0.78	3.0
1k	COOCH_{3}	2	50	0.78	$\leqq 0.1$	$\leqq 0.1$	1.56	2.4
11	CN	2	12.5	0.78	$\leqq 0.1$	$\leqq 0.1$	0.78	14.7
1 m	OH	2	50	1.56	$\leqq 0.1$	0.2	3.13	6.7
1 n	OCH_{3}	2	25	0.78	$\leqq 0.1$	$\leqq 0.1$	1.56	20.8
10	OCONH_{2}	2	12.5	0.39	$\leqq 0.1$	$\leqq 0.1$	0.78	6.1
1 p	F	2	6.25	1.56	≤ 0.1	≤ 0.1	1.56	25.6
$1 q$	NHAc	2	25	0.78	$\leqq 0.1$	0.2	0.78	0.7
1 r	$\mathrm{H}^{\text {c }}$	1	50	1.56	$\leqq 0.1$	0.39	1.56	30.4
2	$\left(3-\mathrm{OCH}_{2} \mathrm{COOCH}_{3}\right)^{\text {c }}$		>400	1.56	$\leqq 0.1$	0.2	1.56	24.4
Cefi	me^{c}		25	0.78	$\leqq 0.1$	0.2	0.78	30.2

${ }^{\text {a }}$ The MICs were determined by a standard agar dilution method using Sensitive Test agar (Eiken, Japan).
b The peak serum levels were measured by a disc-plate method using Escherichia coli SC 507 or Micrococcus luteus NIHJ as the test organism.
c For compounds $\mathbf{1 r}, 2$ and cefixime see ref 1 or 2, 6 and 4, respectively.
NT: Not tested.
Abbreviations: S.a.; Staphylococcus aureus 209P JC-1, E.c.; Escherichia coli NIHJ JC-2, K.p.; Klebsiella pneumoniae IFO 3317, M.m.; Morganella morganii IID 602, S.m.; Serratia marcescens IID 618.
the higher lipophilicity of the sulfur atom than that of the oxygen atom.
On the other hand, against all the Gram-negative bacteria, these new compounds except 1c with an amino acid group at the C-3 position exhibited potent antibacterial activity comparable to cefixime and compound 2.

Most of these new compounds displayed good oral absorption in rats. In particular, compounds 1d and $\mathbf{1 p}$ showed high peak serum levels after oral administration, and the peak serum level of $\mathbf{1 d}$ was almost equal to that of cefixime. Contrary to our expectation, the oral absorption of $1 \mathbf{1 a}$ was much lower than that of the 3 -oxy congener $\mathbf{2}$ in rats.

The representative compounds in this series ($\mathbf{1 d}$ and $\mathbf{1 p}$) possessing the potent in vitro antibacterial activity and good oral absorption in rats were then advanced to a preliminary in vivo efficacy trial by oral administration. As shown in Table 2, the two compounds, particularly 1d, showed good in vivo efficacy against a systemic infection in mice induced by Klebsiella pneumoniae 6, though less potent than that of
cefixime.
In this study, we found some new orally administered cefixime type cephalosporins with improved activity against S. aureus by introduction of a substituted-alkylthio group into the $\mathrm{C}-3$ position. Further chemical modifications of the C-3 position of the cephalosporins are now under study to enhance still more the activity against Staphylococci.

Experimental

MP's were determined with a Yanagimoto

Table 2. In vivo antibacterial activity of $\mathbf{1 d}$ and $\mathbf{1 p}$ against systemic infections in mice induced by Klebsiella pneumoniae 6.

Compound	ED $_{50}(\mathrm{mg} / \mathrm{kg})^{\boldsymbol{a}}$	MIC $(\mu \mathrm{g} / \mathrm{ml})^{\mathbf{b}}$
$\mathbf{1 d}$	$1.09(0.49 \sim 1.95)$	0.05
$\mathbf{1 p}$	$3.20(1.62 \sim 6.03)$	$\leqq 0.025$
Cefixime	$0.59(0.22 \sim 1.23)$	$\leqq 0.025$

Drugs were administered orally 1 hour after infection. Infective challenge dose: $2.9 \times 10^{7} \mathrm{cfu} / \mathrm{mouse}$, ip, (5% mucin).

Mouse: Male ICR strain, 4 weeks, 10 mice/group.
a Probit method (95% confidence limits).
${ }^{\text {b }}$ Inoculum size: $10^{6} \mathrm{cfu} / \mathrm{ml}$. micro-melting point apparatus and are uncorrected. IR spectra were taken on a Jasco DS-701G IR spectrometer. ${ }^{1} \mathrm{H}$ NMR spectra were recorded on a Varian XL-200 NMR spectrometer using TMS or sodium trimethylsilyl propionate- d_{4} (in $\mathrm{D}_{2} \mathrm{O}$) as an internal standard. Mass spectra (MS) were measured on a Jeol JMX-DX303 or JMS-SX102 mass spectrometer. Most chromatographic separations were done using Wako Silica gel C-200 (100~200 mesh, Wako, Japan) or Sephadex LH-20 (Pharmacia, Sweden).

In Vitro and In Vivo Antibacterial Activities

MICs were determined by the 2-fold agar dilution method using Sensitive Test agar (Eiken, Japan) after incubation at $37^{\circ} \mathrm{C}$ for 18 hours with an inoculum size of $10^{6} \mathrm{cfu} / \mathrm{ml}$. Mouse protecting experiments were conducted by use of male ICR mice ($n=10$) infected intraperitoneally with 0.5 ml of a bacterial suspension containing 100% or more minimal lethal doses. Hog gastric mucin ($5 \% \mathrm{w} / \mathrm{v}$) was added to the suspension before injection. The test drugs in 5% gum arabic were administered orally 1 hour after the infection. Mortality of the animals was recorded daily over a period of 7 days and the ED_{50} values were calculated by the method of probit ${ }^{9}$.

Oral Absorption Study

Male SLC/Wister rats ($n=3$) weighing 180~220 g were fasted overnight and orally dosed with $50 \mathrm{mg} / \mathrm{kg}$ of the test compounds. Serum samples were collected at $0.5,1,2$ and 4 hours, respectively, after dosing. Serum levels of the test compounds were measured by the disc-plate method using Escherichia coli SC 507 or Micrococcus luteus NIHJ as a test organism and Sensitive Test agar as the test medium.

Diphenylmethyl 7β-[2-(2-Tritylaminothiazol-4-yl)-2-[(Z)-diphenylmethoxycarbonylmethoxyimino]-acetamido]-3-methanesulfonyloxy-3-cephem-4-carboxylate (5a)

To a solution of 7β-amino-3-methanesulfonyloxycephalosporanic acid Bh ester $3 \mathrm{a}^{7}$ ($2.65 \mathrm{~g}, 5.76 \mathrm{~mm}$) in THF (80 ml) was added 2-(2-tritylaminothiazol-4-yl)-2-[(Z)-diphenylmethoxycarbonylmethoxyimino]acetic acid (4) ($4.14 \mathrm{~g}, 1.1$ equiv) and pyridine ($1.37 \mathrm{~g}, 3.0$ equiv) under ice-cooling. After being stirred at $-10^{\circ} \mathrm{C}$, phosphorus oxychloride ($1.76 \mathrm{~g}, 2.0$ equiv) was added dropwise to the solution, and the mixture was stirred at $-10 \sim-5^{\circ} \mathrm{C}$ for 20 minutes. Then, brine (100 ml) was added to the mixture and extracted with EtOAc $(100 \mathrm{ml})$. The extract was washed successively with 0.5% aq $\mathrm{NaHCO}_{3}(50 \mathrm{ml})$ and brine (100 ml), dried $\left(\mathrm{MgSO}_{4}\right)$ and evaporated. The residue was purified by column chromatography on silica gel (eluent; EtOAc-n-hexane, $1: 1$) to afford $4.56 \mathrm{~g}(72 \%)$ of 5 a as an amorphous solid: $\mathrm{IR}(\mathrm{KBr}) \mathrm{cm}^{-1}$ 1795 (β-lactam), 1736, 1692; ${ }^{1} \mathrm{H}$ NMR (DMSO- d_{6}) $\delta 3.18\left(3 \mathrm{H}, \mathrm{s}, \mathrm{SO}_{2} \mathrm{CH}_{3}\right), 3.65\left(1 \mathrm{H}, \mathrm{d}, J=17 \mathrm{~Hz}, 2-\mathrm{H}_{\alpha}\right)$, $3.97\left(1 \mathrm{H}, \mathrm{d}, J=17 \mathrm{~Hz}, 2-\mathrm{H}_{\beta}\right), 4.82\left(2 \mathrm{H}, \mathrm{brs},=\mathrm{NOCH}_{2}\right), 5.31(1 \mathrm{H}, \mathrm{d}, J=5 \mathrm{~Hz}, 6-\mathrm{H}), 5.86(1 \mathrm{H}, \mathrm{dd}, J=5$ and $8 \mathrm{~Hz}, 7-\mathrm{H}), 6.75(1 \mathrm{H}, \mathrm{s}$, thiazole $5-\mathrm{H}), 6.89\left(1 \mathrm{H}, \mathrm{s}, \mathrm{CHPh}_{2}\right), 6.91(1 \mathrm{H}, \mathrm{s}, \mathrm{CHPh}), 7.17 \sim 7.53(35 \mathrm{H}$, m , aromatic H), $8.90(1 \mathrm{H}, \mathrm{brs}, \operatorname{TrNH}), 9.70(1 \mathrm{H}, \mathrm{d}, J=8 \mathrm{~Hz}, \mathrm{CONH}) ;$ FAB-MS $m / z 1,096(\mathrm{M}+\mathrm{H})^{+}$.
p-Methoxybenzyl 7β-[2-(2-Tritylaminothiazol-4-yl)-2-[(Z)-diphenylmethoxycarbonylmethoxyimino]-acetamido]-3-methanesulfonyloxy-3-cephem-4-carboxylate (5b)

This compound was prepared from 3b (PMB ester) in 75% yield as described for 5a from 3a. The
spectral data of $\mathbf{5 b}$ are as follows: IR (KBr) $\mathrm{cm}^{-1} 1794$ (β-lactam), 1735, 1688; ${ }^{1} \mathrm{H}$ NMR (DMSO- d_{6}) $\delta 3.36\left(3 \mathrm{H}, \mathrm{s}, \mathrm{SO}_{2} \mathrm{CH}_{3}\right), 3.60\left(1 \mathrm{H}, \mathrm{d}, J=18 \mathrm{~Hz}, 2-\mathrm{H}_{\alpha}\right), 3.74\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}\right), 3.96\left(1 \mathrm{H}, \mathrm{d}, J=18 \mathrm{~Hz}, 2-\mathrm{H}_{\beta}\right)$, $4.82\left(2 \mathrm{H}, \mathrm{brs},=\mathrm{NOCH}_{2}\right), 5.11$ and $5.23\left(2 \mathrm{H}, \mathrm{ABq}, J=12 \mathrm{~Hz}, \mathrm{OCH}_{2} \mathrm{Ph}\right), 5.26(1 \mathrm{H}, \mathrm{d}, J=5 \mathrm{~Hz}, 6-\mathrm{H}), 5.80$ $(1 \mathrm{H}, \mathrm{dd}, J=5$ and $8 \mathrm{~Hz}, 7-\mathrm{H}), 6.74(1 \mathrm{H}, \mathrm{s}$, thiazole $5-\mathrm{H}), 6.88\left(1 \mathrm{H}, \mathrm{s}, \mathrm{CHPh}_{2}\right), 6.92(2 \mathrm{H}, \mathrm{d}, J=9 \mathrm{~Hz}$, aromatic H$), 7.10 \sim 7.60(27 \mathrm{H}, \mathrm{m}$, aromatic H$), 8.89(1 \mathrm{H}, \operatorname{brs}, \operatorname{TrNH}), 9.65(1 \mathrm{H}, \mathrm{d}, J=8 \mathrm{~Hz}, \mathrm{CONH})$; FAB-MS $m / z \quad 1,050(\mathrm{M}+\mathrm{H})^{+}$.

Diphenylmethyl 7β-[2-(2-Tritylaminothiazol-4-yl)-2-[(Z)-diphenylmethoxycarbonylmethoxyimino]-acetamido]-3-cyanomethylthio-3-cephem-4-carboxylate (8d) (Method A)

To a solution of $\mathbf{5 a}(500 \mathrm{mg}, 0.46 \mathrm{~mm}$) in DMF (5 ml) were added 70% sodium hydrosulfide (41 mg , 1.1 equiv) and N, N-diisopropylethylamine ($89 \mathrm{mg}, 1.5$ equiv) dissolved in DMF (2 ml) at $-5^{\circ} \mathrm{C}$. After being stirred for 20 minutes at the same temperature, chloroacetonitrile ($69 \mathrm{mg}, 2.0$ equiv) was added to the solution at $0^{\circ} \mathrm{C}$, and then stirred for 20 minutes at the same temperature. Subsequently, $0.5 \% \mathrm{HCl}(10 \mathrm{ml})$ was added to the reaction mixture and extracted with EtOAc (20 ml). The extract was washed with 0.5% $\mathrm{aq} \mathrm{NaHCO}_{3}(10 \mathrm{ml})$ and brine $(20 \mathrm{ml})$, successively, and then dried $\left(\mathrm{MgSO}_{4}\right)$ and evaporated. The residue was purified by column chromatography on silica gel (eluent; EtOAc-n-hexane, $1: 1$) and crystallized from MeOH to give $385 \mathrm{mg}\left(78 \%\right.$) of 8d: MP $129 \sim 131^{\circ} \mathrm{C}$; IR (KBr) $\mathrm{cm}^{-1} 2315$ (nitrile), 1780 (β-lactam), 1730, $1680 ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 3.21$ and $3.40\left(2 \mathrm{H}, \mathrm{ABq}, J=17 \mathrm{~Hz}, \mathrm{SCH}_{2} \mathrm{CN}\right), 3.42\left(1 \mathrm{H}, \mathrm{d}, J=17 \mathrm{~Hz}, 2-\mathrm{H}_{\alpha}\right)$, $3.66\left(1 \mathrm{H}, \mathrm{d}, J=17 \mathrm{~Hz}, 2-\mathrm{H}_{\beta}\right), 4.93$ and $5.05\left(2 \mathrm{H}, \mathrm{ABq}, J=16 \mathrm{~Hz},=\mathrm{NOCH}_{2}\right), 5.06(1 \mathrm{H}, \mathrm{d}, J=5 \mathrm{~Hz}, 6-\mathrm{H})$, $5.95(1 \mathrm{H}, \mathrm{dd}, J=5$ and $9 \mathrm{~Hz}, 7-\mathrm{H}), 6.81(1 \mathrm{H}, \mathrm{s}$, thiazole $5-\mathrm{H}), 6.98\left(1 \mathrm{H}, \mathrm{s}, \mathrm{C} H \mathrm{Ph}_{2}\right), 6.99\left(1 \mathrm{H}, \mathrm{s}, \mathrm{CHPh}_{2}\right)$, $7.02(1 \mathrm{H}, \mathrm{brs}, \operatorname{TrNH}), 7.20 \sim 7.55(35 \mathrm{H}, \mathrm{m}$, aromatic H$), 8.17(1 \mathrm{H}, \mathrm{d}, J=9 \mathrm{~Hz}, \mathrm{CONH}) ;$ FAB-MS m / z $1,073(\mathrm{M}+\mathrm{H})^{+}$.

Anal Calcd for $\mathrm{C}_{61} \mathrm{H}_{48} \mathrm{~N}_{6} \mathrm{O}_{7} \mathrm{~S}_{3}: \quad \mathrm{C} 68.26$, H 4.51, N 7.83. Found: \quad C 67.96, H 4.46, N 7.66.

Compounds $\mathbf{8 a}, \mathbf{8 b}, \mathbf{8 e} \sim \mathbf{8 n}, \mathbf{8 p}$ and $\mathbf{8 q}$ were similarly prepared from $\mathbf{5 a}$ or $\mathbf{5 b}$ with a corresponding substituted-alkyl halide 7 according to the procedure described for $\mathbf{8 d}$. Their spectral data are summarized in Table 3.

Diphenylmethyl 7 7β-[2-(2-Tritylaminothiazol-4-yl)-2-[(Z)-diphenylmethoxycarbonylmethoxyimino]-acetamido]-3-mercapto-3-cephem-4-carboxylate (6)

After the reaction of $5 \mathbf{a}$ with sodium hydrosulfide according to the procedure for $\mathbf{8 d}$, water was added to the reaction mixture and washed with $\mathrm{Et}_{2} \mathrm{O}$. The aqueous layer was adjusted to pH 2 with $0.5 \% \mathrm{HCl}$ and extracted with EtOAc. The extract was washed with brine, dried $\left(\mathrm{MgSO}_{4}\right)$ and evaporated. The residue was dissolved in a small amount of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, and added dropwise to isopropyl ether with stirring. The precipitate formed was collected by filtration to give $6(85 \%)$ as a pale yellow powder: IR (KBr) cm^{-1} 1785 (β-lactam), 1733, 1687; ${ }^{1} \mathrm{H}$ NMR (DMSO- d_{6}) $\delta 3.73\left(2 \mathrm{H}\right.$, br s, $\left.2-\mathrm{H}_{\alpha, \beta}\right), 4.85\left(2 \mathrm{H}\right.$, br s, $\left.=\mathrm{NOCH}_{2}\right)$, $5.26(1 \mathrm{H}, \mathrm{d}, J=5 \mathrm{~Hz}, 6-\mathrm{H}), 5.68(1 \mathrm{H}, \mathrm{dd}, J=5$ and $8 \mathrm{~Hz}, 7-\mathrm{H}), 6.85($ thiazole $5-\mathrm{H}), 6.86(1 \mathrm{H}, \mathrm{s}, \mathrm{CHPh})$, $6.90\left(1 \mathrm{H}, \mathrm{s}, \mathrm{C} H \mathrm{Ph}_{2}\right), 7.16 \sim 7.61(35 \mathrm{H}, \mathrm{m}$, aromatic H$), 8.93(1 \mathrm{H}, \mathrm{br}, \operatorname{TrNH}), 9.58(1 \mathrm{H}, \mathrm{d}, J=8 \mathrm{~Hz}$, CONH); FAB-MS $m / z 1,034(\mathrm{M}+\mathrm{H})^{+}$.

Diphenylmethyl 7 β-[2-(2-Tritylaminothiazol-4-yl)-2-[(Z)-diphenylmethoxycarbonylmethoxyimino]-acetamido]-3-[2R-(N-tert-butoxycarbonylamino)-2-diphenylmethoxycarbonylethylthio]-3-cephem-4carboxylate (8c) (Method B)

To a solution of $5 \mathrm{a}(300 \mathrm{mg}, 0.27 \mathrm{~mm})$ in $\mathrm{CH}_{3} \mathrm{CN}(5 \mathrm{ml})$ were added D - N -(tert-Boc)cystein diphenylmethyl ester 9 c ($138 \mathrm{mg}, 1.3$ equiv) and N, N-diisopropylethylamine ($40 \mathrm{mg}, 1.1$ equiv) under ice-cooling. After stirring for 2 hours at the same temperature, $0.5 \% \mathrm{HCl}(5 \mathrm{ml})$ was added to the reaction mixture and extracted with EtOAc (10 ml). The extract was washed with brine (10 ml), and then dried $\left(\mathrm{MgSO}_{4}\right)$ and evaporated. The residue was chromatographed on a Lobar column packed with LiChroprep Si 60 (size B, $40 \sim 63 \mu \mathrm{~m}$, Merck), (eluent; acetone- n-hexane, $2: 3$) to give $112 \mathrm{mg}(30 \%)$ of the title compound 8 c and the corresponding Δ^{2}-isomer ($38 \mathrm{mg}, 10 \%$). 8c: IR (KBr) $\mathrm{cm}^{-1} 1780$ (β-lactam), 1710, $1490 ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 1.40\left(9 \mathrm{H}, \mathrm{s}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right), 3.09\left(1 \mathrm{H}, \mathrm{d}, J=17 \mathrm{~Hz}, 2-\mathrm{H}_{\alpha}\right), 3.15(2 \mathrm{H}, \mathrm{d}, J=5 \mathrm{~Hz}$, $\left.\mathrm{SCH}_{2}\right), 3.36\left(1 \mathrm{H}, \mathrm{d}, J=17 \mathrm{~Hz}, 2-\mathrm{H}_{\beta}\right), 4.52 \sim 4.62(1 \mathrm{H}, \mathrm{m}, \mathrm{C} H \mathrm{NHBoc}), 4.76(1 \mathrm{H}, \mathrm{d}, J=5 \mathrm{~Hz}, 6-\mathrm{H}), 4.91$

Table 3. ${ }^{1} \mathrm{H}$ NMR, MS and IR spectral data of $\mathbf{8}$.

8

	Compound	n	${ }^{1} \mathrm{H}$ NMR, $\delta\left(\mathrm{CDCl}_{3}\right)$	$\underset{(m / z)^{\mathrm{a}}}{\mathrm{MS}}$	$\underset{\left(\mathrm{Km}^{-1}\right.}{(\mathrm{Kr})}$
No.	$\mathrm{R} / \mathrm{R}_{1}$				
8a	$\mathrm{COOCH}_{3} / \mathrm{Bh}$	1	$3.32(1 \mathrm{H}, \mathrm{d}, J=17 \mathrm{~Hz}), 3.34(1 \mathrm{H}, \mathrm{d}, J=15 \mathrm{~Hz}), 3.45$ $(1 \mathrm{H}, \mathrm{d}, J=15 \mathrm{~Hz}), 3.60(1 \mathrm{H}, \mathrm{d}, J=17 \mathrm{~Hz}), 3.68(3 \mathrm{H}, \mathrm{s})$, $4.94(1 \mathrm{H}, \mathrm{d}, J=17 \mathrm{~Hz}), 5.03(1 \mathrm{H}, J=5 \mathrm{~Hz}), 5.06(1 \mathrm{H}, \mathrm{d}$, $J=17 \mathrm{~Hz}), 5.87(1 \mathrm{H}, \mathrm{dd}, J=5,9 \mathrm{~Hz}), 6.83(1 \mathrm{H}, \mathrm{s}), 6.95$ $(1 \mathrm{H}, \mathrm{s}), 6.97(1 \mathrm{H}, \mathrm{s}), 7.01(1 \mathrm{H}, \mathrm{br}$ s), $7.14 \sim 7.54(35 \mathrm{H}, \mathrm{m}), 8.14$ $(1 \mathrm{H}, \mathrm{d}, J=9 \mathrm{~Hz})$	1,106	$\begin{aligned} & 1,780, \\ & 1,730, \\ & 1,685 \end{aligned}$
8b	$\mathrm{CONH}_{2} / \mathrm{Bh}$	1	$\begin{aligned} & 3.30(1 \mathrm{H}, \mathrm{~d}, J=17 \mathrm{~Hz}), 3.35(2 \mathrm{H}, \mathrm{br} \mathrm{~s}), 3.51(1 \mathrm{H}, \mathrm{~d}, \\ & J=17 \mathrm{~Hz}), 4.92(1 \mathrm{H}, \mathrm{~d}, J=17 \mathrm{~Hz}), 5.02(1 \mathrm{H}, \mathrm{~d}, J=5 \mathrm{~Hz}) \text {, } \\ & 5.03(1 \mathrm{H}, \mathrm{~d}, J=17 \mathrm{~Hz}), 5.33(1 \mathrm{H}, \mathrm{br}), 5.87(1 \mathrm{H}, \mathrm{dd} \\ & J=5,9 \mathrm{~Hz}), 6.38(1 \mathrm{H}, \mathrm{br}), 6.80(1 \mathrm{H}, \mathrm{~s}), 6.96(2 \mathrm{H}, \mathrm{~s}), 7.02 \\ & (1 \mathrm{H}, \mathrm{br} s), 7.24 \sim 7.50(35 \mathrm{H}, \mathrm{~m}), 8.12(1 \mathrm{H}, \mathrm{~d}, J=9 \mathrm{~Hz}) \end{aligned}$	1,091	$\begin{aligned} & 1,785, \\ & 1,730, \\ & 1,685 \end{aligned}$
8 e	$\mathrm{CH}=\mathrm{CH}_{2} / \mathrm{Bh}$	1	$3.25(1 \mathrm{H}, \mathrm{d}, J=17 \mathrm{~Hz}), 3.26 \sim 3.40(2 \mathrm{H}, \mathrm{m}), 3.40(1 \mathrm{H}, \mathrm{d}$, $J=17 \mathrm{~Hz}), 4.94(1 \mathrm{H}, \mathrm{d}, J=17 \mathrm{~Hz}), 5.01(1 \mathrm{H}, \mathrm{d}, J=5 \mathrm{~Hz})$, $5.06(1 \mathrm{H}, \mathrm{d}, J=17 \mathrm{~Hz}), 5.10 \sim 5.22(2 \mathrm{H}, \mathrm{m}), 5.64 \sim 5.77$ $(1 \mathrm{H}, \mathrm{m}), 5.81(1 \mathrm{H}, \mathrm{dd}, J=5,9 \mathrm{~Hz}), 6.84(1 \mathrm{H}, \mathrm{s}), 6.96$ $(2 \mathrm{H}, \mathrm{s}), 7.01(1 \mathrm{H}, \mathrm{br} \mathrm{s}), 7.23 \sim 7.55(35 \mathrm{H}, \mathrm{m}), 8.15(1 \mathrm{H}, \mathrm{d}$, $J=9 \mathrm{~Hz}$)	1,074	$\begin{aligned} & 1,780 \\ & 1,735, \\ & 1,685 \end{aligned}$
8 f	$\mathrm{CF}_{3} / \mathrm{Bh}$	1	$\begin{aligned} & 3.00 \sim 3.30(2 \mathrm{H}, \mathrm{~m}), 3.26(1 \mathrm{H}, \mathrm{~d}, J=17 \mathrm{~Hz}), 3.53(1 \mathrm{H}, \mathrm{~d} \\ & J=17 \mathrm{~Hz}), 4.91(1 \mathrm{H}, \mathrm{~d}, J=17 \mathrm{~Hz}), 5.03(1 \mathrm{H}, \mathrm{~d}, J=5 \mathrm{~Hz}), \\ & 5.05(1 \mathrm{H}, \mathrm{~d}, J=17 \mathrm{~Hz}), 5.91(1 \mathrm{H}, \mathrm{dd}, J=5,9 \mathrm{~Hz}), 6.81 \\ & (1 \mathrm{H}, \mathrm{~s}), 6.96(1 \mathrm{H}, \mathrm{~s}), 7.00(2 \mathrm{H}, \mathrm{~s}), 7.14 \sim 7.50(35 \mathrm{H}, \mathrm{~m}), \\ & 8.12(1 \mathrm{H}, \mathrm{~d}, J=9 \mathrm{~Hz}) \end{aligned}$	1,116	$\begin{aligned} & 1,790, \\ & 1,735, \\ & 1,690 \end{aligned}$
8g	$\mathrm{SCH}_{3} / \mathrm{Bh}$	1	$\begin{aligned} & 2.09(3 \mathrm{H}, \mathrm{~s}), 3.39(1 \mathrm{H}, \mathrm{~d}, J=17 \mathrm{~Hz}), 3.60(1 \mathrm{H}, \mathrm{~d}, \\ & J=17 \mathrm{~Hz}), 3.65(1 \mathrm{H}, \mathrm{~d}, J=13 \mathrm{~Hz}), 3.77(1 \mathrm{H}, \mathrm{~d}, J=13 \mathrm{~Hz}), \\ & 4.94(1 \mathrm{H}, \mathrm{~d}, J=17 \mathrm{~Hz}), 5.05(1 \mathrm{H}, \mathrm{~d}, J=5 \mathrm{~Hz}), 5.06(1 \mathrm{H}, \mathrm{~d}, \\ & J=17 \mathrm{~Hz}), 5.87(1 \mathrm{H}, \mathrm{dd}, J=5,9 \mathrm{~Hz}), 6.84(1 \mathrm{H}, \mathrm{~s}), 6.97 \\ & (2 \mathrm{H}, \mathrm{~s}), 7.01(1 \mathrm{H}, \mathrm{br} \mathrm{~s}), 7.16 \sim 7.53(35 \mathrm{H}, \mathrm{~m}), 8.14(1 \mathrm{H}, \mathrm{~d}, \\ & J=9 \mathrm{~Hz}) \end{aligned}$	1,094	$\begin{aligned} & 1,780 \\ & 1,725, \\ & 1,680 \end{aligned}$
8h	$\mathrm{Ph} / \mathrm{Bh}$	1	$3.16(1 \mathrm{H}, \mathrm{d}, J=17 \mathrm{~Hz}), 3.30(1 \mathrm{H}, \mathrm{d}, J=17 \mathrm{~Hz}), 3.82$ $(1 \mathrm{H}, \mathrm{d}, J=13 \mathrm{~Hz}), 3.89(1 \mathrm{H}, \mathrm{d}, J=13 \mathrm{~Hz}), 4.91(1 \mathrm{H}, \mathrm{d}$, $J=17 \mathrm{~Hz}), 4.91(1 \mathrm{H}, \mathrm{d}, J=5 \mathrm{~Hz}), 5.04(1 \mathrm{H}, \mathrm{d}, J=17 \mathrm{~Hz})$, $5.81(1 \mathrm{H}, \mathrm{dd}, J=5,9 \mathrm{~Hz}), 6.81(1 \mathrm{H}, \mathrm{s}), 6.96(2 \mathrm{H}, \mathrm{s})$, $7.00(1 \mathrm{H}, \mathrm{br} \mathrm{s}), 7.19 \sim 7.52(40 \mathrm{H}, \mathrm{m}), 8.16(1 \mathrm{H}, \mathrm{d}, J=$ 9 Hz)	1,124	$\begin{aligned} & 1,775, \\ & 1,730, \\ & 1,675 \end{aligned}$
$8 i$	Pyridin-2-yl/Bh	1	$3.29(1 \mathrm{H}, \mathrm{d}, J=17 \mathrm{~Hz}), 3.64(1 \mathrm{H}, \mathrm{d}, J=17 \mathrm{~Hz}), 3.96(1 \mathrm{H}$, $\mathrm{d}, J=14 \mathrm{~Hz}), 4.08(1 \mathrm{H}, \mathrm{d}, J=14 \mathrm{~Hz}), 4.92(1 \mathrm{H}, \mathrm{d}, J=$ $5 \mathrm{~Hz}), 4.93(1 \mathrm{H}, \mathrm{d}, J=17 \mathrm{~Hz}), 5.05(1 \mathrm{H}, \mathrm{d}, J=17 \mathrm{~Hz}), 5.79$ $(1 \mathrm{H}, \mathrm{dd}, J=5,8 \mathrm{~Hz}), 5.82(1 \mathrm{H}, \mathrm{s}), 6.93(1 \mathrm{H}, \mathrm{s}), 6.95$ $(1 \mathrm{H}, \mathrm{s}), 7.00(1 \mathrm{H}, \mathrm{br} \mathrm{s}), 7.10 \sim 7.66(38 \mathrm{H}, \mathrm{m}), 8.11(1 \mathrm{H}, \mathrm{d}$, $J=8 \mathrm{~Hz}), 8.47(1 \mathrm{H}, \mathrm{d}, J=5 \mathrm{~Hz})$	1,125	$\begin{aligned} & 1,775, \\ & 1,730, \\ & 1,675 \end{aligned}$
8j	$\begin{aligned} & \text { 2-Tritylaminothia- } \\ & \text { zol-4-yl/Bh } \end{aligned}$	1	$3.09(1 \mathrm{H}, \mathrm{d}, J=17 \mathrm{~Hz}), 3.38(1 \mathrm{H}, \mathrm{d}, J=17 \mathrm{~Hz}), 3.60$ $(1 \mathrm{H}, \mathrm{d}, J=14 \mathrm{~Hz}), 3.73(1 \mathrm{H}, \mathrm{d}, J=14 \mathrm{~Hz}), 4.70(1 \mathrm{H}, \mathrm{d}$, $J=5 \mathrm{~Hz}), 4.90(1 \mathrm{H}, \mathrm{d}, J=16 \mathrm{~Hz}), 5.04(1 \mathrm{H}, \mathrm{d}, J=16 \mathrm{~Hz})$, $5.77(\mathrm{IH}, \mathrm{dd}, J=5,9 \mathrm{~Hz}), 6.00(\mathrm{lH}, \mathrm{s}), 6.53(1 \mathrm{H}, \mathrm{br} \mathrm{s})$, $6.84(\mathrm{IH}, \mathrm{s}), 6.94(2 \mathrm{H}, \mathrm{s}), 7.00(1 \mathrm{H}$, br s), $7.18 \sim 7.54$ $(50 \mathrm{H}, \mathrm{m}), 8.13(1 \mathrm{H}, \mathrm{d}, J=9 \mathrm{~Hz})$	1,388	$\begin{aligned} & 1,780 \\ & 1,735 \\ & 1,680 \end{aligned}$

Table 3. (Continued)

Compound		n	${ }^{1} \mathrm{H}$ NMR, $\delta\left(\mathrm{CDCl}_{3}\right)$	$\underset{(m / z)^{\mathrm{a}}}{\mathrm{MS}}$	$\begin{gathered} \mathrm{IR}(\mathrm{KBr}) \\ \mathrm{cm}^{-1} \end{gathered}$
No.	$\mathrm{R} / \mathrm{R}_{1}$				
8k	$\mathrm{COOCH}_{3} / \mathrm{Bh}$	2	$2.53(2 \mathrm{H}, \mathrm{t}, J=7 \mathrm{~Hz}), 2.93(2 \mathrm{H}, \mathrm{t}, J=7 \mathrm{~Hz}), 3.27(1 \mathrm{H}, \mathrm{d}$, $J=17 \mathrm{~Hz}), 3.44(1 \mathrm{H}, \mathrm{d}, J=17 \mathrm{~Hz}), 3.68(3 \mathrm{H}, \mathrm{s}), 4.94$ $(1 \mathrm{H}, \mathrm{d}, J=17 \mathrm{~Hz}), 5.03(1 \mathrm{H}, \mathrm{d}, J=5 \mathrm{~Hz}), 5.06(1 \mathrm{H}, \mathrm{d}$, $J=17 \mathrm{~Hz}), 5.83(1 \mathrm{H}, \mathrm{dd}, J=5,8 \mathrm{~Hz}), 6.83(1 \mathrm{H}, \mathrm{s}), 6.96$ $(2 \mathrm{H}, \mathrm{s}), 7.01(1 \mathrm{H}, \mathrm{br} \mathrm{s}), 7.25 \sim 7.62(35 \mathrm{H}, \mathrm{m}), 8.19(1 \mathrm{H}, \mathrm{d}$, $J=8 \mathrm{~Hz}$)	1,120	$\begin{aligned} & 1,780 \\ & 1,730, \\ & 1,680 \end{aligned}$
81	$\mathrm{CN} / \mathrm{Bh}$	2	$\begin{aligned} & 2.40(2 \mathrm{H}, \mathrm{t}, J=7 \mathrm{~Hz}), 2.78(2 \mathrm{H}, \mathrm{t}, J=7 \mathrm{~Hz}), 3.20(1 \mathrm{H}, \mathrm{~d}, \\ & J=17 \mathrm{~Hz}), 3.45(1 \mathrm{H}, \mathrm{~d}, J=17 \mathrm{~Hz}), 4.92(1 \mathrm{H}, \mathrm{~d}, J=17 \mathrm{~Hz}), \\ & 5.03(1 \mathrm{H}, \mathrm{~d}, J=5 \mathrm{~Hz}), 5.05(1 \mathrm{H}, \mathrm{~d}, J=17 \mathrm{~Hz}), 5.85(1 \mathrm{H}, \mathrm{dd}, \\ & J=5,9 \mathrm{~Hz}), 6.80(1 \mathrm{H}, \mathrm{~s}), 6.96(1 \mathrm{H}, \mathrm{~s}), 6.98(1 \mathrm{H}, \mathrm{~s}), 7.00 \\ & (1 \mathrm{H}, \mathrm{br} \mathrm{~s}), 7.22 \sim 7.48(35 \mathrm{H}, \mathrm{~m}), 8.12(1 \mathrm{H}, \mathrm{~d}, J=9 \mathrm{~Hz}) \end{aligned}$	1,087	$\begin{aligned} & 1,780 \\ & 1,730 \\ & 1,680 \end{aligned}$
8m	OH/PMB	2	$\begin{aligned} & 2.70 \sim 2.96(2 \mathrm{H}, \mathrm{~m}), 3.30(1 \mathrm{H}, \mathrm{~d}, J=18 \mathrm{~Hz}), 3.50(1 \mathrm{H}, \mathrm{~d}, \\ & J=18 \mathrm{~Hz}), 3.60 \sim 3.78(2 \mathrm{H}, \mathrm{~m}), 3.80(3 \mathrm{H}, \mathrm{~s}), 4.93(1 \mathrm{H}, \mathrm{~d}, \\ & J=16 \mathrm{~Hz}), 5.01(1 \mathrm{H}, \mathrm{~d}, J=5 \mathrm{~Hz}), 5.04(1 \mathrm{H}, \mathrm{~d}, J=16 \mathrm{~Hz}), \\ & 5.22(1 \mathrm{H}, \mathrm{~d}, J=12 \mathrm{~Hz}), 5.29(1 \mathrm{H}, \mathrm{~d}, J=12 \mathrm{~Hz}), 5.85 \\ & (1 \mathrm{H}, \mathrm{dd}, J=5,9 \mathrm{~Hz}), 6.79(1 \mathrm{H}, \mathrm{~s}), 6.90(2 \mathrm{H}, \mathrm{~d}, J=9 \mathrm{~Hz}), \\ & 6.98(1 \mathrm{H}, \mathrm{~s}), 7.02(1 \mathrm{H}, \mathrm{br} \mathrm{~s}), 7.16 \sim 7.48(27 \mathrm{H}, \mathrm{~m}), 8.10 \\ & (1 \mathrm{H}, \mathrm{~d}, J=9 \mathrm{~Hz}) \end{aligned}$	1,032	$\begin{aligned} & 1,775, \\ & 1,725, \\ & 1,675 \end{aligned}$
8n	$\mathrm{OCH}_{3} / \mathrm{Bh}$	2	$2.84(2 \mathrm{H}, \mathrm{t}, J=6 \mathrm{~Hz}), 3.26(1 \mathrm{H}, \mathrm{d}, J=17 \mathrm{~Hz}), 3.29(3 \mathrm{H}, \mathrm{s})$, $3.46(1 \mathrm{H}, \mathrm{d}, J=17 \mathrm{~Hz}), 3.48(2 \mathrm{H}, \mathrm{t}, J=6 \mathrm{~Hz}), 4.94(1 \mathrm{H}, \mathrm{d}$, $J=17 \mathrm{~Hz}), 5.03(1 \mathrm{H}, \mathrm{d}, J=5 \mathrm{~Hz}), 5.06(1 \mathrm{H}, \mathrm{d}, J=17 \mathrm{~Hz})$, $5.80(1 \mathrm{H}, \mathrm{dd}, J=5,8 \mathrm{~Hz}), 6.84(1 \mathrm{H}, \mathrm{s}), 6.96(2 \mathrm{H}, \mathrm{s}), 7.00$ $(1 \mathrm{H}, \mathrm{br} \mathrm{s}), 7.12 \sim 7.53(35 \mathrm{H}, \mathrm{m}), 8.16(1 \mathrm{H}, \mathrm{d}, J=8 \mathrm{~Hz})$	1,092	$\begin{aligned} & \text { 1,780, } \\ & 1,730, \\ & 1,680 \end{aligned}$
8p	F/Bh	2	$\begin{aligned} & 2.80 \sim 3.03(2 \mathrm{H}, \mathrm{~m}), 3.25(1 \mathrm{H}, \mathrm{~d}, J=17 \mathrm{~Hz}), 3.44(1 \mathrm{H}, \mathrm{~d}, \\ & J=17 \mathrm{~Hz}), 4.28 \sim 3.40(1 \mathrm{H}, \mathrm{~m}), 4.50 \sim 4.62(1 \mathrm{H}, \mathrm{~m}), 4.94 \\ & (1 \mathrm{H}, \mathrm{~d}, J=17 \mathrm{~Hz}), 5.04(1 \mathrm{H}, \mathrm{~d}, J=5 \mathrm{~Hz}), 5.06(1 \mathrm{H}, \mathrm{~d}, \\ & J=17 \mathrm{~Hz}), 5.84(1 \mathrm{H}, \mathrm{dd}, J=5,9 \mathrm{~Hz}), 6.84(1 \mathrm{H}, \mathrm{~s}), 6.96 \\ & (2 \mathrm{H}, \mathrm{~s}), 7.00(1 \mathrm{H}, \mathrm{br} \mathrm{~s}), 7.23 \sim 7.52(35 \mathrm{H}, \mathrm{~m}), 8.16(1 \mathrm{H}, \mathrm{~d}, \\ & J=9 \mathrm{~Hz}) \end{aligned}$	1,080	$\begin{aligned} & 1,785, \\ & 1,735, \\ & 1,685 \end{aligned}$
8 q	NHAc/Bh	2	$1.83(3 \mathrm{H}, \mathrm{s}), 2.62 \sim 2.93(2 \mathrm{H}, \mathrm{m}), 3.07 \sim 3.48(3 \mathrm{H}, \mathrm{m}), 3.50$ $(1 \mathrm{H}, \mathrm{d}, J=17 \mathrm{~Hz}), 4.94(1 \mathrm{H}, \mathrm{d}, J=17 \mathrm{~Hz}), 5.04(1 \mathrm{H}, \mathrm{d}$, $J=17 \mathrm{~Hz}), 5.06(1 \mathrm{H}, \mathrm{d}, J=5 \mathrm{~Hz}), 5.87(1 \mathrm{H}, \mathrm{dd}, J=$ $5,9 \mathrm{~Hz}), 6.37(1 \mathrm{H}, \mathrm{t}, J=6 \mathrm{~Hz}), 6.81(\mathrm{H}, \mathrm{s}), 6.96(1 \mathrm{H}, \mathrm{s})$, $6.98(1 \mathrm{H}, \mathrm{s}), 7.03(1 \mathrm{H}, \mathrm{br} \mathrm{s}), 7.10 \sim 7.48(35 \mathrm{H}, \mathrm{m}), 8.12$ $(1 \mathrm{H}, \mathrm{d}, J=9 \mathrm{~Hz})$	1,119	$\begin{aligned} & 1,775, \\ & 1,725, \\ & 1,660 \end{aligned}$

[^0]and $5.04\left(2 \mathrm{H}, \mathrm{ABq}, J=17 \mathrm{~Hz},=\mathrm{NOCH}_{2}\right), 5.38(1 \mathrm{H}, \mathrm{d}, J=8 \mathrm{~Hz}, \operatorname{BocN} H), 5.79(1 \mathrm{H}, \mathrm{dd}, J=5$ and 9 Hz , $7-\mathrm{H}), 6.82(1 \mathrm{H}, \mathrm{s}$, thiazole $5-\mathrm{H}), 6.83\left(1 \mathrm{H}, \mathrm{s}, \mathrm{C} H \mathrm{Ph}_{2}\right), 6.94\left(2 \mathrm{H}, \mathrm{s}, \mathrm{C} H \mathrm{Ph}_{2} \times 2\right), 7.00(1 \mathrm{H}$, brs, $\operatorname{TrNH})$, $7.16 \sim 7.52\left(45 \mathrm{H}, \mathrm{m}\right.$, aromatic H), $8.12(1 \mathrm{H}, \mathrm{d}, J=9 \mathrm{~Hz}, \mathrm{CONH}) ;$ FAB-MS $m / z 1,387(\mathrm{M}+\mathrm{H})^{+}$.
p-Methoxybenzyl 7β-[2-(2-Tritylaminothiazol-4-yl)-2-[(Z)-diphenylmethoxycarbonylmethoxyimino]-acetamido]-3-(2-carbamoyloxyethylthio)-3-cephem-4-carboxylate (80) (via $\mathbf{8 m}$)

To a solution of the 3 -(2-hydroxyethylthio) derivative $8 \mathrm{~m}\left(400 \mathrm{mg}, 0.39 \mathrm{~mm}\right.$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (10 ml) was added chlorosulfonyl isocyanate $\left(0.044 \mathrm{ml}, 1.2\right.$ equiv) at $-30^{\circ} \mathrm{C}$, and the reaction mixture was stirred for 15 minutes at $-10^{\circ} \mathrm{C}$. Then, 20% aq $\mathrm{Na}_{2} \mathrm{SO}_{3}(5 \mathrm{ml})$ was added to the mixture and stirred for 1 hour at room temperature. The separated organic layer was washed with brine $(10 \mathrm{ml} \times 3)$, dried $\left(\mathrm{MgSO}_{4}\right)$ and evaporated. The residue was purified by column chromatography on silica gel (eluent; benzene-acetone, $7: 1$) to yield $240 \mathrm{mg}(58 \%)$ of $\mathbf{8 o}$ as an amorphous solid: IR (KBr) $\mathrm{cm}^{-1} 3240,1775$ (β-lactam), 1700, $1510 ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 2.92\left(2 \mathrm{H}, \mathrm{t}, J=6 \mathrm{~Hz}, 3-\mathrm{SCH}_{2}\right), 3.30\left(1 \mathrm{H}, \mathrm{d}, J=17 \mathrm{~Hz}, 2-\mathrm{H}_{\alpha}\right), 3.52(1 \mathrm{H}, \mathrm{d}$, $\left.J=17 \mathrm{~Hz}, 2-\mathrm{H}_{\beta}\right), 3.80\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}\right), 4.16\left(2 \mathrm{H}, \mathrm{t}, J=6 \mathrm{~Hz}, \mathrm{SCH}_{2} \mathrm{CH}_{2} \mathrm{O}\right), 4.72\left(2 \mathrm{H}, \mathrm{brs}, \mathrm{CONH}_{2}\right), 4.95$

Table 4. ${ }^{1} \mathrm{H}$ NMR and IR spectrum data of $\mathbf{1}$.

1

	Compound	n	${ }^{1} \mathrm{H}$ NMR, $\delta\left(\mathrm{D}_{2} \mathrm{O}\right)$	$\begin{aligned} & \text { IR (} \mathrm{KBr})^{\mathrm{a}} \\ & \mathrm{~cm}^{-1} \end{aligned}$
No.	R			
1a	COOCH_{3}	1	$3.56(1 \mathrm{H}, \mathrm{d}, J=17 \mathrm{~Hz}), 3.57(1 \mathrm{H}, \mathrm{d}, J=15 \mathrm{~Hz}), 3.68(1 \mathrm{H}, \mathrm{d}$, $J=15 \mathrm{~Hz}), 3.76(3 \mathrm{H}, \mathrm{s}), 3.86(1 \mathrm{H}, \mathrm{d}, J=17 \mathrm{~Hz}), 4.60(2 \mathrm{H}, \mathrm{s}), 5.27$ $(1 \mathrm{H}, \mathrm{d}, J=5 \mathrm{~Hz}), 5.84(1 \mathrm{H}, \mathrm{d}, J=5 \mathrm{~Hz}), 7.08(1 \mathrm{H}, \mathrm{s})$	1,755
1b	CONH_{2}	1	$3.52(2 \mathrm{H}, \mathrm{s}), 3.56(1 \mathrm{H}, \mathrm{d}, J=17 \mathrm{~Hz}), 3.82(1 \mathrm{H}, \mathrm{d}, J=17 \mathrm{~Hz})$, $4.60(2 \mathrm{H}, \mathrm{s}), 5.28(1 \mathrm{H}, \mathrm{d}, J=5 \mathrm{~Hz}), 5.85(1 \mathrm{H}, \mathrm{d}, J=5 \mathrm{~Hz}), 7.07$ ($1 \mathrm{H}, \mathrm{s}$)	1,760
1 c	$\mathrm{CH}\left(\mathrm{NH}_{2}\right) \mathrm{COONa}(\mathrm{D})$	1	$2.91(1 \mathrm{H}, \mathrm{dd}, J=11,15 \mathrm{~Hz}), 3.45(1 \mathrm{H}, \mathrm{dd}, J=4,15 \mathrm{~Hz})$, $3.56 \sim 3.62(2 \mathrm{H}, \mathrm{m}), 3.80(1 \mathrm{H}, \mathrm{d}, J=17 \mathrm{~Hz}), 4.59(2 \mathrm{H}, \mathrm{s}), 5.31(1 \mathrm{H}$, $\mathrm{d}, J=5 \mathrm{~Hz}), 5.85(1 \mathrm{H}, \mathrm{d}, J=5 \mathrm{~Hz}), 7.08(\mathrm{lH}, \mathrm{s})$	1,755
1 e	$\mathrm{CH}=\mathrm{CH}_{2}$	1	$\begin{aligned} & 3.34 \sim 3.54(2 \mathrm{H}, \mathrm{~m}), 3.54(1 \mathrm{H}, \mathrm{~d}, J=17 \mathrm{~Hz}), 3.79(1 \mathrm{H}, \mathrm{~d} \\ & J=17 \mathrm{~Hz}), 4.59(2 \mathrm{H}, \mathrm{~s}), 5.10 \sim 5.28(2 \mathrm{H}, \mathrm{~m}), 5.25(1 \mathrm{H}, \mathrm{~d}, J=5 \mathrm{~Hz}), \\ & 5.82(1 \mathrm{H}, \mathrm{~d}, J=5 \mathrm{~Hz}), 5.78 \sim 6.00(1 \mathrm{H}, \mathrm{~m}), 7.08(1 \mathrm{H}, \mathrm{~s}) \end{aligned}$	1,755
$1 f$	CF_{3}	1	$\begin{aligned} & 3.30 \sim 3.68(2 \mathrm{H}, \mathrm{~m}), 3.58(1 \mathrm{H}, \mathrm{~d}, J=17 \mathrm{~Hz}), 3.91(1 \mathrm{H}, \mathrm{~d}, \\ & J=17 \mathrm{~Hz}), 4.60(2 \mathrm{H}, \mathrm{~s}), 5.28(1 \mathrm{H}, \mathrm{~d}, J=5 \mathrm{~Hz}), 5.85(1 \mathrm{H}, \mathrm{~d}, \\ & J=5 \mathrm{~Hz}), 7.08(1 \mathrm{H}, \mathrm{~s}) \end{aligned}$	1,760
1g	SCH_{3}	1	$2.20(3 \mathrm{H}, \mathrm{s}), 3.61(1 \mathrm{H}, \mathrm{d}, J=17 \mathrm{~Hz}), 3.88(1 \mathrm{H}, \mathrm{d}, J=14 \mathrm{~Hz}), 3.89$ $(1 \mathrm{H}, \mathrm{d}, J=17 \mathrm{~Hz}), 4.00(1 \mathrm{H}, \mathrm{d}, J=14 \mathrm{~Hz}), 4.60(2 \mathrm{H}, \mathrm{s}), 5.29$ $(1 \mathrm{H}, \mathrm{d}, J=5 \mathrm{~Hz}), 5.84(1 \mathrm{H}, \mathrm{d}, J=5 \mathrm{~Hz}), 7.08(1 \mathrm{H}, \mathrm{s})$	1,760
1h	Ph	1	$\begin{aligned} & 3.27(1 \mathrm{H}, \mathrm{~d}, J=17 \mathrm{~Hz}), 3.52(1 \mathrm{H}, \mathrm{~d}, J=17 \mathrm{~Hz}), 3.97(\mathrm{lH}, \mathrm{~d}, \\ & J=12 \mathrm{~Hz}), 4.07(1 \mathrm{H}, \mathrm{~d}, J=12 \mathrm{~Hz}), 4.58(2 \mathrm{H}, \mathrm{~s}), 5.11(1 \mathrm{H}, \mathrm{~d}, \\ & J=5 \mathrm{~Hz}), 5.78(1 \mathrm{H}, \mathrm{~d}, J=5 \mathrm{~Hz}), 7.06(1 \mathrm{H}, \mathrm{~s}), 7.30 \sim 7.47(5 \mathrm{H}, \mathrm{~m}) \end{aligned}$	1,755
1 i	Pyridin-2-yl	1	$\begin{aligned} & 3.16(1 \mathrm{H}, \mathrm{~d}, J=17 \mathrm{~Hz}), 3.54(1 \mathrm{H}, \mathrm{~d}, J=17 \mathrm{~Hz}), 4.03(1 \mathrm{H}, \mathrm{~d}, \\ & J=13 \mathrm{~Hz}), 4.14(1 \mathrm{H}, \mathrm{~d}, J=13 \mathrm{~Hz}), 4.58(2 \mathrm{H}, \mathrm{~s}), 5.13(1 \mathrm{H}, \mathrm{~d}, \\ & J=5 \mathrm{~Hz}), 5.79(1 \mathrm{H}, \mathrm{~d}, J=5 \mathrm{~Hz}), 7.06(1 \mathrm{H}, \mathrm{~s}), 7.32 \sim 7.42(1 \mathrm{H}, \mathrm{~m}), \\ & 7.50(1 \mathrm{H}, \mathrm{~d}, J=8 \mathrm{~Hz}), 7.86(1 \mathrm{H}, \mathrm{t}, J=8 \mathrm{~Hz}), 8.47(1 \mathrm{H}, \mathrm{~d}, J=5 \mathrm{~Hz}) \end{aligned}$	1,750
1j	2-Aminothiazol-4-yl	1	$\begin{aligned} & 3.14(1 \mathrm{H}, \mathrm{~d}, J=17 \mathrm{~Hz}), 3.57(1 \mathrm{H}, \mathrm{~d}, J=17 \mathrm{~Hz}), 3.75(1 \mathrm{H}, \mathrm{~d} \\ & J=14 \mathrm{~Hz}), 3.90(1 \mathrm{H}, \mathrm{~d}, J=14 \mathrm{~Hz}), 4.59(2 \mathrm{H}, \mathrm{~s}), 5.18(1 \mathrm{H}, \mathrm{~d}, \\ & J=5 \mathrm{~Hz}), 5.80(1 \mathrm{H}, \mathrm{~d}, J=5 \mathrm{~Hz}), 6.54(1 \mathrm{H}, \mathrm{~s}), 7.07(1 \mathrm{H}, \mathrm{~s}) \end{aligned}$	1,755
1k	COOCH_{3}	2	$\begin{aligned} & 2.72(2 \mathrm{H}, \mathrm{t}, J=7 \mathrm{~Hz}), 3.02(2 \mathrm{H}, \mathrm{t}, J=7 \mathrm{~Hz}), 3.54(1 \mathrm{H}, \mathrm{~d}, \\ & J=17 \mathrm{~Hz}), 3.72(3 \mathrm{H}, \mathrm{~s}), 3.84(1 \mathrm{H}, \mathrm{~d}, J=17 \mathrm{~Hz}), 4.59(2 \mathrm{H}, \mathrm{~s}), 5.27 \\ & (1 \mathrm{H}, \mathrm{~d}, J=5 \mathrm{~Hz}), 5.83(1 \mathrm{H}, \mathrm{~d}, J=5 \mathrm{~Hz}), 7.08(1 \mathrm{H}, \mathrm{~s}) \end{aligned}$	1,755
11	CN	2	$2.80(2 \mathrm{H}, \mathrm{t}, J=7 \mathrm{~Hz}), 3.04(2 \mathrm{H}, \mathrm{m}), 3.56(1 \mathrm{H}, \mathrm{d}, J=17 \mathrm{~Hz}), 3.88$ $(1 \mathrm{H}, \mathrm{d}, J=17 \mathrm{~Hz}), 4.59(2 \mathrm{H}, \mathrm{s}), 5.29(1 \mathrm{H}, \mathrm{d}, J=5 \mathrm{~Hz}), 5.85(1 \mathrm{H}$, d, $J=5 \mathrm{~Hz}), 7.08(1 \mathrm{H}, \mathrm{s})$	1,755
1m	OH	2	$2.77 \sim 3.08(2 \mathrm{H}, \mathrm{m}), 3.58(1 \mathrm{H}, \mathrm{d}, J=17 \mathrm{~Hz}), 3.75(1 \mathrm{H}, \mathrm{t}, J=6 \mathrm{~Hz})$, $3.82(1 \mathrm{H}, \mathrm{d}, J=17 \mathrm{~Hz}), 4.60(2 \mathrm{H}, \mathrm{s}), 5.30(1 \mathrm{H}, \mathrm{d}, J=5 \mathrm{~Hz}), 5.85$ $(1 \mathrm{H}, \mathrm{d}, J=5 \mathrm{~Hz}), 7.10(1 \mathrm{H}, \mathrm{s})$	1,750
1 n	OCH_{3}	2	$2.98(2 \mathrm{H}, \mathrm{t}, J=7 \mathrm{~Hz}), 3.39(3 \mathrm{H}, \mathrm{s}), 3.56(1 \mathrm{H}, \mathrm{d}, J=17 \mathrm{~Hz}), 3.66$ $(2 \mathrm{H}, \mathrm{t}, J=7 \mathrm{~Hz}), 3.86(2 \mathrm{H}, \mathrm{t}, J=17 \mathrm{~Hz}), 4.60(2 \mathrm{H}, \mathrm{s}), 5.28(1 \mathrm{H}, \mathrm{d}$, $J=5 \mathrm{~Hz}), 5.84(1 \mathrm{H}, \mathrm{d}, J=5 \mathrm{~Hz}), 7.09(1 \mathrm{H}, \mathrm{s})$	1,755
10	OCONH_{2}	2	$\begin{aligned} & 2.98 \sim 3.10(2 \mathrm{H}, \mathrm{~m}), 3.57(1 \mathrm{H}, \mathrm{~d}, J=17 \mathrm{~Hz}), 3.86(1 \mathrm{H}, \mathrm{~d}, \\ & J=17 \mathrm{~Hz}), 4.10(2 \mathrm{H}, \mathrm{t}, J=6 \mathrm{~Hz}), 4.59(2 \mathrm{H}, \mathrm{~s}), 5.28(1 \mathrm{H}, \mathrm{~d}, \\ & J=5 \mathrm{~Hz}), 5.83(1 \mathrm{H}, \mathrm{~d}, J=5 \mathrm{~Hz}), 7.08(1 \mathrm{H}, \mathrm{~s}) \end{aligned}$	1,750
1p	F	2	$\begin{aligned} & 3.00 \sim 3.09(1 \mathrm{H}, \mathrm{~m}), 3.11 \sim 3.20(1 \mathrm{H}, \mathrm{~m}), 3.57(1 \mathrm{H}, \mathrm{~d}, J=17 \mathrm{~Hz}) \text {, } \\ & 3.87(1 \mathrm{H}, \mathrm{~d}, J=17 \mathrm{~Hz}), 4.52(1 \mathrm{H}, \mathrm{t}, J=7 \mathrm{~Hz}), 4.60(2 \mathrm{H}, \mathrm{~s}), 4.77 \\ & (1 \mathrm{H}, \mathrm{t}, J=7 \mathrm{~Hz}), 5.28(1 \mathrm{H}, \mathrm{~d}, J=5 \mathrm{~Hz}), 5.84(1 \mathrm{H}, \mathrm{~d}, J=5 \mathrm{~Hz}) \\ & 7.09(1 \mathrm{H}, \mathrm{~s}) \end{aligned}$	1,755

Table 4. (Continued)

Compound		n	${ }^{1} \mathrm{H}$ NMR, $\delta\left(\mathrm{D}_{2} \mathrm{O}\right)$	$\underset{\mathrm{cm}^{-1}}{\mathrm{IR}(\mathrm{KBr})^{a}}$
No.	R			
$1 q$	NHAc	2	$\begin{aligned} & 1.99(3 \mathrm{H}, \mathrm{~s}), 2.70 \sim 3.06(2 \mathrm{H}, \mathrm{~m}), 3.26 \sim 3.48(2 \mathrm{H}, \mathrm{~m}), 3.54(1 \mathrm{H}, \mathrm{~d}, \\ & J=17 \mathrm{~Hz}), 3.80(1 \mathrm{H}, \mathrm{~d}, J=17 \mathrm{~Hz}), 4.60(2 \mathrm{H}, \mathrm{~s}), 5.29(1 \mathrm{H}, \mathrm{~d}, \\ & J=5 \mathrm{~Hz}), 5.82(1 \mathrm{H}, J=5 \mathrm{~Hz}), 7.08(1 \mathrm{H}, \mathrm{~s}) \end{aligned}$	1,755

${ }^{\text {a }} \beta$-Lactam.
and $5.05\left(2 \mathrm{H}, \mathrm{ABq}, J=17 \mathrm{~Hz},=\mathrm{NOCH}_{2}\right), 5.01(1 \mathrm{H}, \mathrm{d}, J=5 \mathrm{~Hz}, 6-\mathrm{H}), 5.24\left(2 \mathrm{H}, \mathrm{s}, \mathrm{OCH} \mathrm{O}_{2} \mathrm{Ph}\right), 5.78(1 \mathrm{H}$, dd, $J=5$ and $9 \mathrm{~Hz}, 7-\mathrm{H}), 6.81(1 \mathrm{H}, \mathrm{s}$, thiazole $5-\mathrm{H}), 6.90(2 \mathrm{H}, \mathrm{d}, J=9 \mathrm{~Hz}$, aromatic H$), 6.97\left(1 \mathrm{H}, \mathrm{s}, \mathrm{C} H \mathrm{Ph}_{2}\right)$, $7.03(1 \mathrm{H}, \mathrm{brs}, \operatorname{TrNH}), 7.24 \sim 7.46(27 \mathrm{H}, \mathrm{m}$, aromatic H$), 8.11(1 \mathrm{H}, \mathrm{d}, J=9 \mathrm{~Hz}, \mathrm{CONH}) ;$ FAB-MS m / z $1,075(\mathrm{M}+\mathrm{H})^{+}$.

Sodium 7 β-[2-(2-Aminothiazol-4-yl)-2-[(Z)-carboxymethoxyimino]acetamido]-3-cyanomethylthio-3-cephem-4-carboxylate (1d)

To a mixture of TFA (5 ml) and anisole (1 ml) was added $\mathbf{8 d}$ ($400 \mathrm{mg}, 0.37 \mathrm{~mm}$) under ice-cooling, and stirred for 45 minutes at the same temperature. Then, the reaction mixture was added dropwise to a mixture of $\mathrm{Et}_{2} \mathrm{O}$ and n-hexane $(1: 2,50 \mathrm{ml})$. The precipitated TFA salt of the desired product was collected by filtration, and washed with a small amount of a mixture of $\mathrm{Et}_{2} \mathrm{O}$ and n-hexane. Subsequently, the TFA salt was dissolved in $\mathrm{H}_{2} \mathrm{O}$ with NaHCO_{3} ($93 \mathrm{mg}, 3.0$ equiv), and chromatographed on Sephadex LH-20 column (eluent; $\mathrm{H}_{2} \mathrm{O}$), then lyophilized to afford $140 \mathrm{mg}(70 \%)$ of $\mathbf{1 d}$ as a white solid: $\mathrm{IR}(\mathrm{KBr}) \mathrm{cm}^{-1}$ 2320 (nitrile), 1760 (β-lactam), $1600 ;{ }^{1} \mathrm{H} \mathrm{NMR}\left(\mathrm{D}_{2} \mathrm{O}\right) \delta 3.65\left(1 \mathrm{H}, \mathrm{d}, J=17 \mathrm{~Hz}, 2-\mathrm{H}_{\alpha}\right), 3.96(1 \mathrm{H}, \mathrm{d}, J=17 \mathrm{~Hz}$, $\left.2-\mathrm{H}_{\beta}\right), 4.60\left(2 \mathrm{H}, \mathrm{s},=\mathrm{NOCH}_{2}\right), 5.32(1 \mathrm{H}, \mathrm{d}, J=5 \mathrm{~Hz}, 6-\mathrm{H}), 5.88(1 \mathrm{H}, \mathrm{d}, J=5 \mathrm{~Hz}, 7-\mathrm{H}), 7.08(1 \mathrm{H}, \mathrm{s}$, thiazole $5-\mathrm{H}$).

The others were similarly prepared from compound $\mathbf{8}$ according to the procedure for $\mathbf{1 d}$ and their spectral data are listed in Table 4.

References

1) Yamanaka, H.; K. Kawabata, K. Miyai, H. Takasugi, T. Kamimura, Y. Mine \& T. Takaya: Studies on β-lactam antibiotics. X. Synthesis and structure-activity relationships of 7β-[(Z)-2-(2-amino-4-thiazolyl)-2-(carboxymethoxyimino)acetamido]cephalosporin derivatives. J. Antibiotics 39: 101~110, 1986
2) Sakagami, K.; T. Watanabe, S. Fukatsu, H. Nitta, M. Hatanaka \& T. Ishimaru: Synthetic cephalosporins V. Synthesis and antibacterial activity of 3-alkylthio-7 $\beta-[(Z)$-2-(2-aminothiazol-4-yl)-2-(O-substituted oxyimino)acetamido]cephalosporins and related compounds. Yakugaku Zasshi (Japanese) 109: 913~925, 1989
3) Nishimura, S.; N. Yasuda, H. Sasaki, K. Kawabata, K. Sakane \& T. Takaya: Synthesis and biological activity of 3-vinylthio- and 3-vinylthiomethylcephem derivatives. J. Antibiotics 43: 1160~1168, 1990
4) Yamanaka, H.; T. Chiba, K. Kawabata, H. Takasugi, T. Masugi \& T. Takaya: Studies on β-lactam antibiotics. IX. Synthesis and biological activity of a new orally active cephalosporin, cefixime (FK027). J. Antibiotics 38: 1738~1751, 1985
5) Sadaki, H.; H. Imaizumi, T. Inaba, T. Hirakawa, Y. Murotani, Y. Watanabe, S. Minami \& I. Saikawa: Studies on β-lactam antibiotics for medicinal purpose. XVIII. Synthesis and structure-activity relationships of $7 \beta-[(Z)$-2-(2-aminothiazol-4-yl)-2-methoxyiminoacetamido]-3-substituted methyl-3-cephem-4-carboxylic acid derivatives. Yakugaku Zasshi (Japanese) 106: 129~146, 1986
6) Yokoo, C.; M. Goi, A. Onodera, M. Murata, T. Nagate, Y. Watanabe \& K. Sota; Studies on cephalosporin antibiotics. II. Synthesis, antibacterial activity and oral absorption of 3-alkoxycarbonylmethoxy-7 $\beta-[(Z)$-2-(2-aminothiazol-4-yl)-2-(O-substituted oxyimino)acetamido]cephalosporins. J. Antibiotics 41: 181~192, 1988
7) Scartazzini, R.; P. Schneider \& H. Bickel: 263. Neue β-Lactam-Antibiotica. Über die Funktionalisierung der Cephem-3-Stellung mittels Schwefel oder Stickstoff. Helv. Chim. Acta 58: 2437~2450, 1975
8) Sakagami, K.; T. Watanabe, S. Fukatsu, H. Nitta, M. Hatanaka \& T. Ishimaru: Synthetic Cephalosporins. II. The synthesis and oral activity of 7-[R-2-amino-2-(3-chloro-4-hydroxyphenyl)acetamido-3-methylthio-3-cephem-4-carboxylic acid and related compounds. J. Antibiotics 40: 1325~1330, 1987
9) Finney, D. J.: The maximum likelihood solution. In Probit Analysis. 2nd. Ed. Ed., D. J. Finney, pp. 48~64, Cambridge University Press, 1952

[^0]: ${ }^{\text {a }}(\mathrm{M}+\mathrm{H})^{+}$.

